CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis.

نویسندگان

  • Jean M Fletcher
  • Roisin Lonergan
  • Lisa Costelloe
  • Katie Kinsella
  • Barry Moran
  • Cliona O'Farrelly
  • Niall Tubridy
  • Kingston H G Mills
چکیده

Despite the fact that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) play a central role in maintaining self-tolerance and that IL-17-producing CD4(+) T cells (Th17 cells) are pathogenic in many autoimmune diseases, evidence to date has indicated that Th17 cells are resistant to suppression by human Foxp3(+) Treg cells. It was recently demonstrated that CD39, an ectonucleotidase which hydrolyzes ATP, is expressed on a subset of human natural Treg cells. We found that although both CD4(+)CD25(high)CD39(+) and CD4(+)CD25(high)CD39(-) T cells suppressed proliferation and IFN-gamma production by responder T cells, only the CD4(+)CD25(high)CD39(+), which were predominantly FoxP3(+), suppressed IL-17 production, whereas CD4(+)CD25(high)CD39(-) T cells produced IL-17. An examination of T cells from multiple sclerosis patients revealed a normal frequency of CD4(+)CD25(+)CD127(low)FoxP3(+), but interestingly a deficit in the relative frequency and the suppressive function of CD4(+)CD25(+)CD127(low)FoxP3(+)CD39(+) Treg cells. The mechanism of suppression by CD39(+) Treg cells appears to require cell contact and can be duplicated by adenosine, which is produced from ATP by the ectonucleotidases CD39 and CD73. Our findings suggest that CD4(+)CD25(+)Foxp3(+)CD39(+) Treg cells play an important role in constraining pathogenic Th17 cells and their reduction in multiple sclerosis patients might lead to an inability to control IL-17 mediated autoimmune inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...

متن کامل

Numerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis

Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...

متن کامل

CD39/CD73 and the imbalance of Th17 cells and regulatory T cells in allergic asthma.

In the immune system, CD4+CD25+Foxp3+ regulatory T cells (Tregs) maintain self‑tolerance and Th17 cells mediate inflammatory responses. CD39 is expressed on the surface of a subset of naturally occurring human Tregs that are important in constraining pathogenic Th17 cells. Additional studies have shown that Tregs differentiate into interleukin‑17 (IL‑17)+Foxp3+ T cells. Our previous study indic...

متن کامل

سلول‌های T تنظیمی: انواع، تولید و عملکرد

T lymphocytes have been characterized to different subsets such as cytotoxic T, Thelper1 (Th1), Th2, Th3, Th9, Th17, and regulatory T cells. Each of these subsets have specific function which distinct them from other lymphocytes. Regulatory T lymphocytes are effective cells in immune system that play an important role in cancers, autoimmune and infectious diseases. Two main subsets of regulator...

متن کامل

T Helper Cells Profile and CD4+CD25+Foxp3+Regulatory T Cells in Polycystic Ovary Syndrome

Background: Polycystic ovary syndrome (PCOS) is considered as the most common cause of female infertility that affects 4-10% of women in the reproductive age. Previous studies have shown the role of a balanced immune response in a successful pregnancy and fertility. Objective: To investigate the T helper cells type 1 (Th1) /Th2/Th17/Treg paradigms in peripheral blood of infertile PCOS compared ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 183 11  شماره 

صفحات  -

تاریخ انتشار 2009